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ABSTRACT

Properties of atoms and molecules undergo significant changes when subjected to spatial confinement. We study the excitation spectra of lithium-
like atoms in the initial 15?25 electronic configuration when confined by an impenetrable spherical cavity. We implement Slater’s X-& method
in Hartree-Fock theory to obtain the excitation spectrum. We verify that as the cavity size decreases, the total, 2s, 2p, and higher excited energy levels
increase. Furthermore, we confirm the existence of crossing points between ns—#np states for low values of the confinement radius such that the
ns — np dipole transition becomes zero at that critical pressure. The crossing points of the s—p states imply that instead of photon absorption, one
observes photon emission for cavities with radius smaller than the critical radius. Hence, the dipole oscillator strength associated with the 2s — 2p
transition becomes negative, and for higher pressures, the 2s — 3p dipole oscillator strength transition becomes larger than unity. We validate the
completeness of the spectrum by calculating the Thomas-Reiche-Kuhn sum rule, as well as the static dipole polarizability and mean excitation
energy of lithium-like atoms. We find that the static dipole polarizability decreases and exhibits a sudden change at the critical pressure for the
absorption-to-emission transition. The mean excitation energy increases as the pressure rises. However, as a consequence of the critical transition
from absorption to emission, the mean excitation energy becomes undetermined for higher pressures, with implications for material damage under
extreme conditions. For unconfined systems, our results show good to excellent agreement with data found in the literature.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/1.5139099

. INTRODUCTION model of a hydrogen atom confined in an impenetrable spherical

Confined quantum systems exhibit significant changes to their cavity to simulate the effect of pressure. In recent years, the topic of

structure, stability, reactivity, binding interactions, dynamics, and
spectra as a consequence of modifications to the spatial boundary
conditions in the presence of an extreme environment. Atoms or
molecules within cavities, organic/inorganic host-guest complexes,
quantum dots, fullerenes, and nanotubes are examples of real
quantum confined systems. The main objective when studying
confined quantum systems is to construct an accurate theoretical
model that takes into account changes in the electronic wave-
function and energy levels due to the boundary conditions imposed
by the surrounding environment. In this respect, theoretical cal-
culations can be realized by adopting a suitable choice of boundary
conditions. The pioneering work of Michels et al.' provided the first

confined atoms has attracted much attention and has become a very
active field of research.”” Reviews with detailed discussion of the
progress in this field can be found in Refs. 2-6 and references
therein.

To describe the electronic structure and interactions of a
multi-electron system, a variety of theoretical methods have been
developed, including, among others, Hartree-Fock (HF) theory
and density functional theory (DFT), and these have had great
success in different problems in atomic physics.””'' Owing to the
complexity of the N-body problem, some approximations have
been implemented, in addition to having the system under con-
finement by spatial limitation of the electrons, which leads to

Matter Radiat. Extremes 5, 024401 (2020); doi: 10.1063/1.5139099
©Author(s) 2020

5, 024401-1


https://doi.org/10.1063/1.5139099
https://doi.org/10.1063/1.5139099
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5139099
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5139099&domain=pdf&date_stamp=2020-03-09
http://orcid.org/0000-0002-9806-3207
http://orcid.org/0000-0002-1937-2686
mailto:trujillo@icf.unam.mx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5139099
https://doi.org/10.1063/1.5139099
https://scitation.org/journal/

Matter and

Radiation at Extremes

complications in the one- and two-electron integrals. A widely used
approach to the treatment of N-body systems is to consider a
pseudopotential that describes the inner electronic structure of the
atom. The basic idea of pseudopotentials is to take into account the
multi-electron core interaction with a single valence electron by
using a modified Coulomb potential.”*'" Such pseudopotential
approaches have been used to describe the electronic spectra of
confined systems.'”'” Lin and Ho'” used a pseudopotential for the
lithium atom to simulate the core interaction with the single va-
lence electron with optimized parameters. They calculated the
photoionization cross section of the 2s shell electron under con-
finement by a power exponential potential due to an endohedral
cavity and found that multiple Cooper resonances emerged.'* Their
results show the importance of cage thickness and a smooth shell
boundary in the photoionization cross section. Another example is
due to Sarsa et al.,"” who studied the effects of confinement on the
outer valence electrons for the ground state configurations of
carbon and iron atoms. In standard HF theory, the main com-
plication that arises when dealing with quantum confined systems
is the treatment of the one- and two-electron integrals, particularly
the electron exchange integral, as shown by Ludefia.'” Fortunately,
Slater'® proposed a simplified approach to treat the electron ex-
change operator in the HF method by replacing it by a term
proportional to the charge density of the inner electrons. This
approach has been fruitful in treating problems in atomic and
molecular structure with satisfactory results,'” particularly in the
development of DFT theory. However, to the authors” knowledge,
there have not been any studies of the effects of confinement on the
excitation spectra of a multi-electron system in the context of HF
theory by means of Slater’s X-a approach.

The goal of this work is to apply Slater’s X-a approach to the
ground and excited states of Li-like atoms confined in an impene-
trable spherical cavity. To show the strength of Slater’s X-a approach
to the calculation of the excitation spectrum of atoms, we take as a
benchmark example the ground states of lithium-like atoms in the
initial electronic configuration 1s*2s, adopting a restricted HF ap-
proach. We focus on the dipole oscillator strength (DOS) and derived
properties such as the static dipole polarizability and the mean ex-
citation energy.

The remainder of this paper is organized as follows. In Sec. I1, we
present the theoretical approach used to study the influence of a
spherical confinement cavity on lithium-like atoms. In Sec. III, we
discuss our results and findings. In Sec. IV, we give our conclusions
and perspectives. Note that we use atomic units (a.u.) throughout,
unless physical units are explicitly stated.

Il. THEORY
A. Slater’s X-a approach in Hartree-Fock theory

In this section, we present the HF method to obtain the 15%2s
ground state energies of Li, Be*, and B> atoms, incorporating
confinement conditions.

In an HF approach, the total wavefunction is defined as a Slater
determinant W(r) = N det{y;}, where N is a normalization constant.
The general restricted HF approach'® considers the two electrons in
the 1s® core to be in the same orbital. To simplify the calculation of the
excitation spectra, we assume that the inner electrons do not see the
outer electrons. This approach is known as the frozen-core
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approximation, which is usually treated within a pseudopotential
approach.””"" However, here we do not use any specific pseudo-
potential formula to describe the interaction of the inner electrons,
since this is calculated explicitly for every confinement configuration
in a self-consistent manner. Then, for the ground state of a lithium-
like atom, the HF equations are

o M

(h + D)y, (1) = ey, (¥),

(hy + 2], - Ry, (1) = ey, (¥), )

where €;are the eigenvalues, y;are the eigenfunctions, hj are the one-

electron operators, and Ji [ and K jare the two-electron Coulomb and
exchange operators, respectively. These operators are defined as

~ 1 7
hj(r) = —Evﬁ ——HVe (r), (3)
) ey (1)
(0, () = “drz w]% (1), (4)
r12

e,

T2

R, (0w, (6) = “ dr

where 71, = |r — r,|. The one-electron operator, Eq. (3), includes the
confinement potential V() (see below). The total ground state energy
of the confined system is given by

Enp = 2hyy + hyy + J1y + 2] 15— Ko (6)

It can be seen that Eq. (1) is in eigenvalue form, so the excitation
spectra of the core electron can be readily obtained. However, Eq. (2)
is not, owing to the presence of the exchange operator, Eq. (5). To have
an eigenvalue equation, we resort to Slater’s X-a approach,'® in which
the exchange operator is replaced by

Ky (0y, (r) = axpi” (0w, (), (7)

where a is a parameter, and p(r) is the charge density due to the 15>
inner electrons'® and is given by

pi(r) = 2|y, (O, (8)

with y4(r) the eigenfunction of the core electrons. To solve the HF
equations (1) and (2), we implement a finite-difference numerical
approach within a self-consistent field (SCF) procedure to obtain the
eigenvalues, eigenfunctions, and dipole-dependent properties. For
each iteration, we calculate Eq. (5) explicitly and determine Slater’s
X-a constant as' "’

_ <p, IR, (0)]y, (1)
W, 0l (ly, (1))

finding the excitation spectrum of the 2s electron. The procedure is
repeated until Eq. (6) has reached self-consistency within a 10~ error
difference for the total ground state energy.

Owing to the spherical symmetry of the system, we assume
vy (r) = R (r)Y]"(0,¢) and R/(r) = ur)/r, where Y]" are spherical
harmonics. This is done for both core and valence wavefunctions.

)

ax
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We consider the lithium-like atoms to be confined by
an impenetrable spherical cavity, so the confinement potential is
given by' °
0, r <Ry,

0, r>Ry. (10)

V. (T’) = {
where Ry is the confinement radius of the cavity and is commensurate
with the confinement pressure (see below).

1. Finite-difference approach

As the finite-difference approach has been reported previously
by Cabrera-Trujillo and Cruz,”' here we just summarize our
implementation to find the eigenvalues and eigenfunctions of Egs. (1)
and (2). The finite-difference approach consists in discretizing the
function u(r) — ug and r — r, known at the kth point on a numerical
grid, with k = 0 corresponding to uy and k = N + 1 to up, 1, which are
the boundary conditions of the system.” In our case, for the im-
penetrable cavity, un,; = 0 and ryy; = Ry. We implement the finite-
difference approach centered at the midpoint. With this, Egs. (1) and
(2) are rewritten as

H¢ =E¢, (1)

where H is a tridiagonal symmetric matrix with N eigenvalues and
eigenfunctions, and ¢ is related to % by a linear transformation.”
We solve Eq. (11) in a grid box that extends from r = 0 to r = R,,
with a total of N'= 2000 points spaced logarithmically in this range as a
function of the confinement radius Ry. This logarithmic grid allows us to
give a better description of the wavefunction cusp at the origin and a
good number of continuum states. We have found that N'= 2000 satisfies
the Thomas-Reiche-Kuhn (TRK) sum rule up to five decimal digits.
The accuracy of our finite-difference approach can be controlled by the
number of points in the grid and their spacing; for example, for the free
lithium atom, we obtain eigenvalues with precision up to the fifth
decimal place. This approach gives a total of N excited states to describe
the DOS electronic properties for each spherical cavity with radius Ry,
per electron. The values of Ry are chosen between 0.5 a.u. and 100 a.u.
Our approach is implemented in a Fortran 95 code that calculates the
eigenvalues, eigenfunctions, and physical properties of the system.

B. Physical properties
1. Dipole oscillator strengths

The DOS accounts for the transition probability from an initial

state to a final excited state and is defined as
2

N
fro =2(Efye — EYyp)|[ (¥ (1) zri €W ()|, (12)
i=1

where € is the direction of momentum transfer or the polarization
vector of the electromagnetic radiation. Here, E¥ and El; are re-
spectively the initial and final total energies, with ¥, and ¥, re-
spectively the initial and final total wavefunctions for a given
transition. Owing to the presence of just a single determinant and for
an electron operator, as in the case of the dipole operator O = Z; r;, the
DOS are reduced to single-electron transitions from either the core or
the valence electron ® Under the spherical symmetry of the system,
Eq. (12) becomes™**
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o =§(€;—€6)|<R’n(r)lr|R6 (V)>|2, (13)
where the i stands for electron i = 1 (core electron transitions) ori =2
(valence electron transitions). To confirm that our numerical ap-
proach has rendered a complete set of states, the TRK sum rule,”’
>, fuo = N,, must be satisfied, i.e., N, = 3. Note that for absorption,
Eq. (13) is positive, but for emission, i.e., when ef1 <ef), the DOS
becomes negative.

2. Static dipole polarizability
The static dipole polarizability is defined through the DOS
[Eq. (12)], and is given by
Xt T e
EHF _EHF in (el

where it exhibits an explicit dependence on the smgle—electron dipole
oscillator strengths. Consequently, it can be rewritten as

o = 20@S + (xfs, (15)

where af; is the contribution from the core (i = 1) or the valence (i = 2)
electron. For photon absorption, the polarizability is positive, but for
photon emission, it becomes negative.

3. Mean excitation energy

A parameter that characterizes the amount of energy loss when a
swift heavy ion penetrates a target is provided by the mean excitation
energy Iy, as defined by Bethe:™*

DSl B By DSl

InI, - (16)
2 2l
Using the TRK sum rule,”” Eq. (16) can be rewritten as
3Inlp = 2.0, f1 In(el — eb) + D, F2 In (e -
=2InI} + InI%, (17)

which is the orbital decomposition or Bragg rule for the mean ex-
citation energy, as used by Oddershede and Sabin”’ in energy loss
deposition studies.

I1l. RESULTS
A. Unconfined lithium-like atoms

To show the reliability of our approach when applied to a multi-
electron system, we presentin Table I the results for the unconfined Li,
Be', and B*" atoms We show the core electron ground and exc1ted
orbital energies €/ and e;, the total HF energy Eyr, the DOS fio p I
the first dipole transmon, the polarizability &, and the mean exci-
tation energy Ii. The same quantities are also reported for the valence
(2s) electron. In the case of the €}* and Eyy. energy values for the Li,
Be", and B>" atoms, we observe good agreement up to four-decimal
precision when compared with the results of Froese-Fischer.” For the
Li atom mean excitation energy I (1)5 , we observe a difference of less
than 5% with respect to the value reported by Oddershede and
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TABLE I. Unconfined ground state properties for free Li, Be", and B" atoms. We report
values forthe core (i = 1) and valence (i= 2) electrons for the ground (¢’5) and excited (egf’ )
orbital energies, the total HF energy Ey, the DOS f' :'SZp’ the static dipole polarizability

o, and the mean excitation energy I p Slaggr’s ay parameter, Eq. (9), takes the values
ofl =0.58002, o = 0.52632, and af " = 0.49922.

Core (15%)
Li Be* B**
el ~2.79232 ~5.666 97 —9.54158
(-2.792 36)" (-5.667 11)° (-9.541 98)"
e? —0.508 09 ~1.13961 —2.02142
Eur —7.23633 -13.6109 —21.9854
(-7.23641)" (-13.6113)" (-21.9862)"
19 0.26119 0.30497 0.32965
als 0.10245 0.027 49 0.01024
1 103.613 197.505 321.368
(109.32)"
Valence (2s')
Li Be* B**
¥ —0.20116 ~0.672 82 -1.39722
(—0.196 32)° (—0.666 15)° (-1.389 85)"
er -0.13861 -0.547 31 ~1.21049
Exr —7.43749 —14.2838 —23.3826
(-7.43272)° (-14.277 4)° (-23.3759)"
(-7.41923)°
S 0.65127 041315 0.299 63
(0.767 1) (0.5109)° ..
a 171.188 27.3836 8.994 40
(164.05)° (24.496 6)' .
> 3.567 84 12.0529 25.7655
(3.29)°

“From Ref. 28.
From Ref. 27.
“From Ref. 29.
9From Ref. 30.
°From Ref. 31.
From Ref. 32.

Sabin.”” For the valence (2s) electron, we obtain orbital energy
values of €= -020116 au, €% =-0.67282 au, and
XY= _1.39722 a.u, for the Li, Be*, and B*" atoms, respectively,
with a difference of less than 3% in comparison with the results of
Froese-Fischer.”” However, for the total HF energy, we obtain values
with a difference of less than 1% with respect to the results of Froese-
Fischer.”” For the dipole polarizability, we obtain a?*" = 171.188 a.u.
and ocgs’B‘? = 27.3836 a.u., in comparison with values of 164.05 a.u.
and 24.4966 a.u. reported by Schwerdtfeger and Nagle’' and Tang
et al.,”’ respectively.

Thus, our approach using Slater’s X-« allows us to account for
the ground state properties € and Ey of the Li, Be*, and B** atoms,
with good agreement with available theoretical results.

In Fig. 1, we show the wavefunctions for the 1sand 2s orbitals as
functions of position r for unconfined Li, Be®, and B** atoms. For
comparison, we also show the results of Froese-Fischer.”® We ob-
serve excellent agreement for the 1s orbital for all ranges. For the 2s
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FIG. 1. Wavefunctions for the 1s and 2s states of Li, Be*, and B* atoms as functions
of the radial coordinate rfor the unconfined atoms. The curves are our results, while
the symbols are from Ref. 28.

electron, we also obtain very good agreement for electron distances
r > 1 a.u. However, we observe that small deviations appear for the
inner part of the wavefunction, r < 1 a.u., compared with the Froese-
Fischer results.

B. Confined total and orbital HF energies

In Fig. 2, we show the 1s, 2s, 2p, 3s, and 3p energy levels for Li,
Be",and B** atoms confined by an impenetrable spherical cavity as a
function of the confinement radius Ry. For comparison, we also
show the results of Weiss’” for the free atom energy levels at Ry = 30
a.u. We can see that the energy levels increase, reaching the con-
tinuum, as the confinement radius decreases. Furthermore, we
observe the appearance of crossing points for the 2s and 2p energy
levels, as well as for the 3s and 3p levels, which are highlighted by
circles for better visualization. Our results confirm the energy level
behavior and crossing already reported from other approaches.”
Figure 2(a) shows the 3s and 3p states of the Li atom. We find that
the energy levels reach the continuum for cavities with Ry < 10 a.u.
and Ry < 12 a.u., respectively. Here, the 3s energy level is deeper than
the 3p state. As the confinement radius decreases, the 3s and 3p
energy levels increase until a crossing point around R, ~ 6 a.u. For
values of R < 6, the 3p energy is lower than the 3s energy. For the 3s
and 3p states of the Be" and B2 atoms, we find a similar trend as for
the Li atom. We can see that the crossing points between the 3s and
3p states of the Li, Be", and B*>" atoms are in the positive spectrum.
For the Be* atom, we find that the crossing point occurs at Ry ~
4.6 au.

In Fig. 2(b), we show the 2s and 2p energy levels, and we can
again see an energy increase and the emergence of crossing points as
R, decreases. We find that the 2p energy level of the lithium atom
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In Fig. 2(c), we show the 1s energy levels as functions of R,. We
find that the effect of the cavity on the 1s ground state energy is
3 minimal for Ry > 2 a.u,, Ry > 1.5a.u.,and Ry > 1 a.u. for Li, Be*, and B**
3 02 t atoms, respectively. For the Li atom, we observe a sudden change in

©
8o the energy for Ry < 2 a.u. and it reaches a positive value for the 1s core
8o state for Ry < 0.77 a.u. A similar situation occurs for the Be" atom for

R, < 0.555 a.u. and for B>* for R, < 0.427 a.u.
06 B T TR o The increase in energy is explained as follows. For an impen-
' — ' etrable cavity, the electrons remain localized within the cavity. As the
pressure increases, so does the electron kinetic energy (as a conse-
quence of the Heisenberg uncertainty principle), and the total energy
can become positive for a critical pressure,”® as we have just shown,
but the system is still bounded.

In Fig. 3, we show the results for the total HF energy for the Li,
Be", and B** atoms in the initial 1s°2s configuration, confined by an
impenetrable spherical cavity, as functions of the confinement radius.
For comparison, we also show, in the case of Li, the theoretical results
of Safiu-Ginarte et al.,”” Le Sech and Banerjee,37 Sarsa and Le Sech,””
and Sarsa et al.,”” and we can see that there is excellent agreement. In
addition, the HF results for the unconfined atoms obtained by Weiss®

25 e2Na.u.)

33

5 are shown at Ry = 5 a.u. For the free case, when Ry — 00 a.u., we obtain

a total energies of EL; = -7.43749 au, EPS = -14.2838 au., and

¢ EEIZE = —23.3826 a.u.,, in good agreement with the values reported by

8 I : Froese-Fischer’® and Safiu-Ginarte et al.”” As the confinement radius

3 e 1 decreases, the HF energy increases, for all atoms, as previously re-

-10 160 161 20 ported by Connerade et al.” For the Li, Be", and B** atoms, we

Ry (a.u) observein Fig. 3 that the effect of the cavity is minimal for Ry > 7.3 a.u.,

Ry > 5.5 a.u, and Ry > 2.5 a.u., respectively. For the Li atom, for

FIG. 2. Orbital energies for the 1s, 25, 2p, 3s, and 3p states of Li, Be*, and B* atoms Ry < 1.3 a.u, the HF energy becomes positive. A similar situation

confined by a spherical impenetrable cavity as a function of the confinement radius occurs for the Be™ and B** atoms for R, < 0.94 a.u. and R, < 0.75 a.u.,
Ro: (a) 3s and 3p states; (b) 2s and 2p states; (c) 1s ground state. The crossing respectively.

points between the ns—np levels are highlighted by circles for better visualization.
The curves without symbols are for the ns states, while the curves with symbols are
for the np states. For comparison, the HF results of Weiss™ for the unconfined atom
energy levels are also shown at Ry = 30 a.u (V). electrons.

From Figs. 2 and 3, we conclude that the effect of the con-
finement cavity is stronger on the valence electrons that on the core

10 v T T
becomes positive for Ry < 4.6 a.u. and the 2s energy level becomes P L
positive for Ry < 4.4 a.u. In this case, the crossing point is present for 50 ) 8
Ry ~ 3.4 a.u. This cavity size corresponds to a pressure of 85 GPa (see Lo Sanu—GlnaIr_tg Steg:;
below), which is lower than the 210 GPa reported by Rahm et al.” of 1 . Sarsa et al.
The discrepancy is attributed to the different confinement models. PR POEP
The same occurs for the Be* atom at a confinement radius of Ry ~ 2.5 3 50
a.u. and for B*" at Ry ~ 2.1 a.u. We obtain positive energy values for \“:-_ '
the 2s and 2p levels of the Be* atom for Ry < 2.4 a.u.and Ry < 2.3 a.u,, uF 10 b ' N 1
respectively. For the 25 and 2p states of the B*" atom, we find positive el
energies for Ry < 1.71 a.u. and R, < 1.55 a.u,, respectively. Note that -15 R 1
since our initial ground state electronic configuration occupies the .
2s orbital level, for cavities with R, lower than the crossing-point 20 | l
radius, one would have photon emission instead of photon ab- e 4
sorption for the initial electronic configuration, 15%2s. We should -25 1' ‘ 3 4 5
stress that for Ry smaller than the critical cavity radius, the lowest- R
energy state of the Li-like systems becomes p-type, and hence the ofau)
photon emission from the initial s to the final p states brings the FIG. 3. Total HF energy, Eq. (6), as a function of cavity radius R, for Li, Be*, and B*
excited electron to its ground state. Once this transition has taken atoms. In the case of Li, the symbols show the theoretical results from Safiu-Ginarte
place, as the cavity radius is reduced, the p-state evolution lies et al”’ (X), Le Sech and Banerjee’’ (0), Sarsa and Le Sech™ (0), and Sarsa
energetically below the corresponding s state, and hence the DOS etal.” (A). The HF results for unconfined atoms as reported by Weiss ™ are shown
become positive for excitations. atRy=5au (V).
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C. Pressure 1
. , 0.8 Tax |
The order of magnitude of the pressure that the cavity exerts on 06 | XX |
the atomic system as Ry is shrunk is given by the static pressure ’ TxOX
o 047 *-Je R ke rer]
aEHF 1 aEHF «% 0.2 Rad
p=-"E__ , (18) 3 -
ov 4nR% ORy ot S 1
where v is the volume of the spherical cavity. In Fig. 4, we show the gi | ‘ (a) is-2p
results for the pressure as a function of the spherical cavity radius R 06 - ‘
for Li, Be*, and B*" atoms. For comparison, we show some 16 —
characteristic pressures found in nature. We first note that for the 14 Fod BL+’ I
same cavity radius, the pressure is lowest for B*", increases for Be", 12 o B§+ -------- .
and it is highest for Li. This is a consequence of the ionic character o .
of the system. The lithium atom is more diffuse in its 2s orbital, so ©2 0.8 | RSN J
the same cavity radius induces a higher pressure, while, owing to 06| RN )
the high nuclear charge, the boron ion has already compacted its 2s 04 | N (b) is-3p
electron, so the same cavity radius induces a smaller pressure on the 02 | x*x* PR % LI ,
ionic system. The figure also shows the cavity size and pressure for 0 g5 * RS
which the 25 — 2p transition occurs in our approach. For Li, we find 1 10 20 30
itat 85 GPa (R, = 3.4 a.u.), for Be" at 350 GPa (R, = 2.5 a.u.), and for Ry (a.u.)

B?* at 690 GPa (R, = 2.1 a.u.). These results are within an order of

magnitude of those reported by Rahm et al., % which were obtained FIG. 5. Dipole oscillator strength for the is — 2p and is — 3p electronic transitions as

afunction of the impenetrable spherical cavity size Ry for Li, Be*, and B2* atoms for i

using a different confinement model, thus confirming the suit- =1 (core) and j = 2 (valence) electrons. The curves without symbols are for the is
ability of our approach. Rahm et al. reported a higher pressure, — 2p fransition of the valence i = 2 electron, while the curves with symbols are for
probably because their model considers penetrable confinement the i = 1 core electron.

conditions.

Ry =6.5a.u., we obtain a DOS 0of 0.460 46 a.u.,and at Rp=3.5a.u.a
D. Dipole oscillator strength value offmp =0.023 20 a.u., near the radius for which the crossing
point occurs. For the Be™ atom, we observe similar behavior. The
DOS for the transition decreases rapidly near Ry ~ 5 a.u., with
fmp =0.35781 a.u., and then reaches a value of f3: 2p = 0.01523
a.u. at Ry = 2.6 a.u., which is near the crossing point. For the B**
atom, we observe the same DOS reduction as R, is decreased until
the crossing pointat Ry =2.1 a.u. When R, is decreased, the DOS for
the valence electron excitation, f %ﬁzp, is reduced until the 2s
electron reaches the crossing point between the 2s and 2p energy

In Fig. 5(a), we show the DOS for the electronic transitions
1s — 2p (core excitations) and 2s — 2p (valence excitations) for Li,
Be', and B** atoms confined by an impenetrable spherical cavity
as a function of the confinement radius Ry. In the case of the Li
atom, for Ry < 15 a.u,, f252p begins to decrease, showing a change

near Ry ~ 9 a.u., where we find a value of f252p =0.58895 a.u. At

10° & - levels, so that at that pressure the DOS become zero (€5 = €5p).

ol '\‘\_‘\ Bgll' oo Crossing occurs for confinement radii Ry ~ 3.4 a.u., 2.4 a.u.,and 2.1

10 RN B™ - 1 a.u. for Li, Be" and B> atoms, respectively. For confinement radii

103 E Motallc hvdr less than the crossing point, the 2p energy levels have lower values

I yarogen than those found for the 2s energy level, and there is photon

= 107 NN 3 emission induced by the pressure cavity. We should note here that

5 10! | Diamondsynthesis . *. i in a sudden approximation perturbation, for a shrinking of the

g mO cavity from radius Ry to Ry + AR,, the probability of finding the

3 10°F RN 1 system in the 2p state is zero owing to symmetry arguments (or-

a 10" | Mariana trench ] thogonal states). Thus, there is a higher probability for the system to

N remain in the same s symmetry state and then proceed to the 2p

102} R state by photon emission. Consequently, for a cavity radius lower

16° | Human bite \\_ than the critical crossing point, f2 22p Decomes negative owing to

o photon emission, and some other transitions must increase its DOS

107 value to satisfy the TRK sum rule. In Fig. 5(a), we also show the core

! Ry (a.u) 10 results for the f}° 1s2p transition, and we can see that the DOS in-

creases as Ry is reduced. f13,, shows an abrupt change near Ry ~ 5

FIG. 4. Static pressure induced by the cavity as a function of cavity size Ry for Li, au,3.5au,and 3 a.u. for the Li, Be", and B*" atoms, respectively.
Be*, and B* atoms confined by an impenetrable spherical cavity. The open square For lower values of Ry, the DOS transition increases, reaching
symbols ( ) indicate the CaVlty size and pressure at which the 2s — 2p transition values near 1 as consequence of conﬁnement) thus becoming a

occurs. Some naturally occurring pressures are also shown. dominant intensity line
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In Fig. 5(b), we show the 1s — 3p and 2s — 3p DOS for Li, Be",
and B2* atoms as functions of the cavity radius. As can be seen, for
cavities with radius lower than the critical crossing point, f35, be-
comes larger than unity, although the TRK sum rule is satisfied fgr all
cavity radii. Thus, 2s — 3p becomes the strongest transition, so there
is a change in luminosity in the atom as the pressure increases, but in
this case due to photon emission induced by the change in pressure,
similar to piezoluminescence."’

E. Static polarizability

In Fig. 6, we show the static dipole polarizabilities «* and a!¢
for the valence and core states for Li, Be*, and B>* atoms confined
by an impenetrable spherical cavity, as a function of the con-
finement radius Ro. The crossing points are highlighted by vertical
lines. Note that owing to the small contribution of the core
electrons, the total atomic polarizability is dominated by the
valence contribution for all pressures. For comparison, Fig. 6(a)
also shows the unconfined Li and Be" results as reported by
Schwerdtfeger and Nagle'' and Tang et al.”” at Ry = 30 a.u., and it
can be seen that there is good agreement with our results. For
Ry — 00, we obtain the dipole polarizabilities for unconfined
lithium-like atoms as a2*' = 171.188 a.u., a?**" = 27.3836 a.u,,
and a?S’BB = 8.994 40 a.u., which exhibit a difference of ~4% with
respect to HF results.'’ From Fig. 6, we observe that as the con-
finement radius decreases, so does the polarizability, until the s—p
crossing point is reached. In Fig. 6(a) for the Li atom, for a cavity
with radius Ry = 4.4 a.u., the polarizability decreases to 54.2926
a.u., which is about 30% of the free value. As R is reduced, the 2s
and 2p energy levels become positive, and the a2 polarizability
increases, diverging at R ~ 3.4 a.u., which is at the critical crossing
point of the 2s-2p energy levels. For lower values of Ry, a* becomes

200 —
(@) : h |

150 | Py 1
3 100 | ' |
< 50 | P |
4 PR (N .

-50 L

-100 —

0.12

01| |
- L Li —— |
3 008 s T
< 0.06 | ke
e
3 0.04 | |

YOMOOE X KX-X— YO000EXK - - X - X - -
0.02 [, x> 1
0 ‘
10° 10"
Ry (a.u.)

FIG. 6. Static dipole polarizabilities a2 (a) and !¢ (b) as functions of cavity
size Ry for Li, Be*, and B?* atoms. The solid triangle (A) and the solid circle ()
at Ry = 30 a.u. are the HF results of Schwerdtfeger and Nagle'' and
Tang et al.,*” respectively.
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FIG. 7. (a) Mean excitation energies I3® (curves with symbols) and I3* (curves
without symbols) as functions of cavity size Ry for Li, Be*, and B atoms. For
comparison, we also show at Ry = 30 a.u. the values of the free atoms obtained by
Oddershede and Sabin’’ (), Kamakura*' (A), and Dehmer et al.** (). (b) Total
mean excitation energy .

negative owing to the transition to photon emission. In the case of
the Be* atom, at Ry = 6.5 a.u., we observe a value of ocfs =26.2083
a.u., and then the polarizability decreases for lower values of the
confinement radius until Ry ~ 3.4 a.u., where a minimum value of
a?s =16.3509 a.u. is found. Then, for values of R, < 3.4 a.u., the
polarizability increases rapidly, diverging at Ry ~ 2.4 a.u., and it
then becomes negative for lower values of R,. A similar situation
occurs for the Be?* atom, but with a minimum value of 6.772 95 a.u.
atRp~2.8a.u.and adivergence at the crossing point Ry ~ 2.1 a.u. In
Fig. 6(b), we show the results for the core contribution ocis, where

0.6

0.55

0.5

0.45

Oy

0.4

0.35

0.3 :
1 10

Ry (a.u.)

FIG. 8. Slater's X-a parameter ay as a function of cavity size Ry for Li, Be*, and B*
atoms.
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g = o o o o o o e o« the effect of the impenetrable cavity starts for Ry < 3 a.u. A decrease

= < N o0 0 on N . .

ol T | oFF N A N o =N — e — S in ol is observed for lower values of R,, where the energy levels

Ol ol " DMy Iy N Il O O O s 0

% B| 88888 "7 ‘hir '8 "8 ¥ ¥ X become positive. As noted already, the total static dipole polar-

5| x| S S S S S S 9 izability o = 2a' + a2 is dominated by the contribution of the

2 valence electron, a?.
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= In Fig. 7, we show the mean excitation energies IS, I%*, and I,, for

3 875 0

@ o O OO © ~ © © © © o Li, Be", and B** atoms confined by an impenetrable spherical cavity as

o S O QN O wn n N — — — — — . R

Llec| ©AQEA 10 1Y Q0 10 10 0 Q functions of the confinement radius R,. We can see thatat Ry = 30 a.u.,

2 5028 =© S5 S S g ¢ s the results for the free mean excitation energies are in good agreement

- . . . 27

=4 with previous HF results from Oddershede and Sabin,”” Kamakura,”'

& p re X

§ Cenan = o o ° and Dehmer et al.”~ From Fig. 7(a), we can see that as R, decreases, Ig®
- . .

2 co oo v v o I~ = o " © increases, showing an abrupt change near Ry ~ 10 a.u., 5a.u.,and 4 a.u.

e & SSSSS ‘N wIn ® S o o~ 0 . . . i

IF| 283833 'y QA I~ I8 K Q9 I~ for the Li, Be*, and B>* atoms, respectively, with I2°" = 3.87967 eV,

< [SESE<N<N- S — o0 N & o6 = — 25.Be* 26.Be>* 0

5 NwB b N =S ;BN I =14.73933 eV, and I;>™ = 28.5561 eV. For the Li valence

8 electron, we observe an increase of ~40% with respect to the free mean

=4 . . .

s e = =N - B, ST, SN B ST, N exc1tat10r; energy at Ry = 4.4 a.u. For Be", we find an increase of ~11%,
é’ 2o 'N Toa A A A A N and for B* an increase of ~9% for the same confinement. Figure 7(a)
| R 2993383 = 'y o o o o o o Is s b+ 2+ . .

= g g g Q g Qg . . . . . . ol bl >
. S22 o ‘o4 4 o o= o also shows I® for Li, Be",and B atf)ms and we obse?rve anincrease in
8 the mean excitation energy as R, is reduced. In Fig. 7(b), we show
2 results for the total mean excitation energy I,. We find I, = 33.708 90
S mE3%s 2 25 % 5 ¢ 5 .8
gl.al 2233 -3 -5 R SRR a.u, in good agreem'engnwuh th_e value of 34.004 13 a.u. obtained by
I HRBHR 8 IR R % ¥ =8 Oddershede and Sabin,”’ Eq. (17), and the value of 34 a.u. reported by
s I g Dehmer et al.*” for Li atoms. Note that as a consequence of 2s-2p
E energy level crossing, the photon emission produces a negative energy
< © 0 O Iy I [ N N = 1 N . . . . . .
3 FEI D= ~ o © — = ~ n N transfer, so the logarithmic contribution is undetermined, as defined
5 = s s - R by Egs. (12) and (13). This is observed in the I?* contribution and in
T 8EIER 1% ‘=2 1] ¥ 1w ik g Y EAS- 102 0 . )
3 ?PIFFS S S5 S S S S S the total I, mean excitation energy for R, less than the critical cavity
S radius at the s—p crossing energy levels. Thus, a different approach
[}
g NNt o o< v o N o o may be required to determine it, such as that proposed by Smith
S al ¥ N~ N~ D~ — N o~ S e} N — etal”
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£ RS S R TR BN CHUNCIRIRINRININ the electron exchange contr.lbutlon to the energy for a confined
& @ aaa rerrlreer e quantum system through a single parameter. In Fig. 8, we show the
£ behavior of Slater’s X-a parameter ax as a function of the cavity
o . o .
S voam® 9 8 8 F 8 v Z confinement radius R,. We find that the largest contr12b+ut10n occurs
§ S| FTRALS R 2T 2 Ry e R for the Li atom, followed by the Be* ion and then the B** ion for low-
= g 8 ez g g 2 202 pressure cavities. The contribution increases as R, decreases,
8 -- - ' ' ' ! ! reaching a maximum, and it then decreases as the cavity becomes
E small. For the ions, the 2s electrons are tighter and the electron
© \O @)} (o] O \O \O o . . e
5 cmowao & MR B OF = X = exchange parameter is lower for large spherical cavities. However,
59| §Facocm o = 14 1o o & O this behavior is inverted as the cavity increases the pressure. For
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E mgagne ~ SIS s s s s < cavities whose radius is smaller than the critical radius, the ay pa-
= rameter is largest for B2, followed by Be™, and then Li. So, electron
3 . . .
3 N O —~ Vo 6 v o o o« exchange is important as long as the valence electrons remain
o N O o~ — 0 [Sa] o o (3o} o bounded
% ISR 8sH Y /R R R R R :R In Tables IT and 111, for reference purposes, we show the 1s, 2s,
17} “eeey o9 g9 9 g9 g 9 and 2p energy levels, the total HF energy, the first allowed DOS
= transition 2s — 2p, the dipole polarizability, the mean excitation
= e o o o energy, and Slater’s ay parameter [Eq. (9)] for selected values of the
> . A . .
Sl ssscs= 8 confinement radius R, for Li, Be*, and B** atoms,
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TABLE Ill. Similar to Table II, but for the Be* and BZ* atoms.
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B @ & Be Y, fh, fh, @ @ 1 R a0
Be*
0.5 2.13712 60.1731 314711 60.3256 0.99070 —-0.60833 1.57296 0.00141 —0.00021 737.308 0.346 04
0.55 0.12348 48.1599 25.2699 445876 099017 -0.60704 1.57359 0.00194 —-0.00014 628.227 0.353 88
0.557 -0.10708 46.7429 24.5379 427470 0.99003 -0.60680 1.57360 0.00202 -0.00016 615.258 0.35498
0.57 -0.50774 44.2554 23.2525 39.5253 098973 -0.60631 1.57356 0.00218 -0.00021 592.433 0.357 06
0.6 —-1.31215 39.1505 20.6129 329541 098882 -0.60497 1.57317 0.00258 —0.00036 545.347 0.361 89
0.8 —4.14559 19.0849 10.2019 7.86146 0.97372 -0.58766 1.55961 0.00620 —0.00352 356.727 0.39524
1.0 —-5.09547 10.3851 5.64546 —-2.41034 0.94073 -0.55361 1.52512 0.01102 -0.01618 274.038 0.428 96
2.0 —5.66314 0.63748 0.34234 -12.9704 0.60997 -0.19404 1.13474 0.02648 -2.15621 198.783 - 0.53027
3.0 —-5.66709 -0.41412 -0.33276 -14.0253 0.39547 0.11846 0.78749 0.02748 18.1115 197.523 41.1282 0.534 69
4.0 —5.66710 -0.61443 -0.48848 -14.2256 0.32582 0.27947 0.58118 0.02749 18.0764 197.515 20.3702 0.52912
5.0 —-5.66709 —0.65995 —-0.53132 -14.2712 0.30863 0.35781 0.44137 0.02749 22.3641 197.515 14.7393  0.52699
6.0 —-5.66709 -0.67023 -0.54324 -14.2814 0.30547 0.39328 0.33629 0.02749 25.3569 197.515 12.8579 0.526 44
10 —5.66708 —0.67289 —0.54730 -—-14.2840 0.30496 0.41309 0.14745 0.02749 27.3744 197.514 12.0547 0.526 30
00 -5.66711 —-0.67282 —-0.54731 -14.2838 0.30497 0.41g 15 0.11710 0.02749 27.3836 197.505 12.0529  0.526 32
B +
0.4 2.05786 91.8653 47.2330 90.8137 0.99079 -0.60909 1.57408 0.00057 0.0 1157.60 0.34526
0.425 0.02686 79.6061 40.9531 74.7372 099050 -0.60835 1.57457 0.00070 0.0 1045.47 0.350 04
043 -0.32806 77.4199 39.8329 71.8863 0.99041 -0.60816 1.57462 0.00073 0.0 1025.37 0.351 00
0.6 —6.73688 33.7516 174281 16.4387 0.97838 -0.59342 1.56524 0.00207 -0.00280 614.980 0.38490
0.8 —-8.76185 15.0984 7.79819 571224 0.93823 -0.55123 1.52306 0.00437 -0.00689 435.736 0.425 00
1.0 -9.31956 7.29126 3.71227 -14.3963 0.86937 -0.48051 1.44714 0.00672 -0.03034 365.245 0.460 22
2.0 -9.54172 -0.67023 -0.69929 -22.6562 0.47774 -0.01872 0.93865 0.01021 -22.1045 321.515 - 0.510 64
3.0 -9.54195 -1.30956 -1.13542 -23.2957 0.35220 0.20447 0.64629 0.01024 6.90857 321.394 40.5256 0.501 88
4.0 -9.54194 -1.38756 -1.20028 -23.3737 0.33175 0.27728 0.46921 0.01024 8.20513 321.394 28.5561 0.499 53
5.0 —-9.54193 -1.39637 -1.20933 -23.3825 0.32976 0.29581 0.34388 0.01024 8.83121 321.393 26.1855 0.499 23
6.0 -9.54192 -1.39717 -1.21037 -23.3833 0.32964 0.29916 0.26451 0.01024 8.97087 321.392 25.8135 0.49920
10 -9.54189 -1.39723 -1.21049 -23.3833 0.32963 0.29966 0.18663 0.01024 8.99381 321.390 25.7654  0.49920
[e%) —-9.54158 -1.39722 -1.21049 -23.3826 0.32965 0.29963 0.18499 0.01024 8.99440 321.368 25.7655  0.49922

IV. CONCLUSIONS

We have studied lithium-like atoms confined by an impenetrable
spherical cavity of radius Ry. We find good to excellent agreement
when comparing orbital and total energies, as well as when deter-
mining dipole transitions, static polarizability, and mean excitation
energies for the unconfined systems. For the lithium atom, we find
excellent agreement for confined ground state energies in comparison
with available theoretical results.

We confirm that, as a consequence of the confinement, the system
orbital and total energies increase as the pressure increases owing to a
reduction in cavity size. However, the first allowed dipole transition,
2s — 2p, decreases, while 2s — 3p increases. Consequently, as the
pressure increases, the intensity of light emitted by the atom in the
cavity is shifted. However, there is a crossing point (critical pressure) at
which the 2s and 2p energy levels are inverted; consequently, the DOS
for that transition becomes zero at that critical pressure. For higher
pressures, the DOS become negative owing to photon emission. In
addition, the 2s — 3p DOS reach values larger than unity for high
pressures, and the 2s — 2p DOS becomes negative. Thus, we can
confirm that the static dipole polarizability is reduced as the pressure
increases, as the electrons become highly localized within the cavity
and less prone to be polarized, and diverges at the point of transition

from photon absorption to photon emission. We also find that the
mean excitation energy, which measures the ability of the atom to
absorb energy due to excitations, increases as the pressure is increased,
with implications for material damage under extreme conditions. As a
result of the existence of the crossing point, the valence and total mean
excitation energy become undetermined owing to a logarithmic in-
determinacy, and thus a different approach may be required.

Our work shows the reliability of Slater’s X-a approach in the
context of HF theory to study confined N-electron quantum systems.
This approach has the advantage that it can be extended to larger
systems to provide excitation spectra in different confinement en-
vironments, thus shedding light on the behavior of N-body quantum
systems under extreme conditions.
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