
High pressure effects on the excitation spectra
and dipole properties of Li, Be+, and B2+ atoms
under confinement

Cite as: Matter Radiat. Extremes 5, 024401 (2020); doi: 10.1063/1.5139099
Submitted: 20 November 2019 • Accepted: 16 January 2020 •
Published Online: 9 March 2020

C. Martı́nez-Flores1 and R. Cabrera-Trujillo2,3,a)

AFFILIATIONS
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ABSTRACT

Properties of atoms andmolecules undergo significant changes when subjected to spatial confinement.We study the excitation spectra of lithium-
like atoms in the initial 1s22s electronic configuration when confined by an impenetrable spherical cavity. We implement Slater’s X-α method
inHartree–Fock theory toobtain the excitation spectrum.Weverify that as the cavity size decreases, the total, 2s, 2p, andhigher excited energy levels
increase. Furthermore, we confirm the existence of crossing points between ns–np states for low values of the confinement radius such that the
ns→ np dipole transition becomes zero at that critical pressure. The crossing points of the s–p states imply that instead of photon absorption, one
observes photon emission for cavities with radius smaller than the critical radius. Hence, the dipole oscillator strength associated with the 2s→ 2p
transition becomes negative, and for higher pressures, the 2s→ 3p dipole oscillator strength transition becomes larger than unity. We validate the
completeness of the spectrum by calculating the Thomas–Reiche–Kuhn sum rule, as well as the static dipole polarizability and mean excitation
energy of lithium-like atoms. We find that the static dipole polarizability decreases and exhibits a sudden change at the critical pressure for the
absorption-to-emission transition. Themean excitation energy increases as the pressure rises. However, as a consequence of the critical transition
fromabsorption to emission, themean excitation energy becomes undetermined for higher pressures,with implications formaterial damage under
extreme conditions. For unconfined systems, our results show good to excellent agreement with data found in the literature.

©2020Author(s). All article content, exceptwhere otherwisenoted, is licensedunder aCreativeCommonsAttribution (CCBY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/1.5139099

I. INTRODUCTION

Confined quantum systems exhibit significant changes to their
structure, stability, reactivity, binding interactions, dynamics, and
spectra as a consequence of modifications to the spatial boundary
conditions in the presence of an extreme environment. Atoms or
molecules within cavities, organic/inorganic host–guest complexes,
quantum dots, fullerenes, and nanotubes are examples of real
quantum confined systems. The main objective when studying
confined quantum systems is to construct an accurate theoretical
model that takes into account changes in the electronic wave-
function and energy levels due to the boundary conditions imposed
by the surrounding environment. In this respect, theoretical cal-
culations can be realized by adopting a suitable choice of boundary
conditions. The pioneering work of Michels et al.1 provided the first

model of a hydrogen atom confined in an impenetrable spherical
cavity to simulate the effect of pressure. In recent years, the topic of
confined atoms has attracted much attention and has become a very
active field of research.2–5 Reviews with detailed discussion of the
progress in this field can be found in Refs. 2–6 and references
therein.

To describe the electronic structure and interactions of a
multi-electron system, a variety of theoretical methods have been
developed, including, among others, Hartree–Fock (HF) theory
and density functional theory (DFT), and these have had great
success in different problems in atomic physics.6–11 Owing to the
complexity of the N-body problem, some approximations have
been implemented, in addition to having the system under con-
finement by spatial limitation of the electrons, which leads to
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complications in the one- and two-electron integrals. A widely used
approach to the treatment of N-body systems is to consider a
pseudopotential that describes the inner electronic structure of the
atom. The basic idea of pseudopotentials is to take into account the
multi-electron core interaction with a single valence electron by
using a modified Coulomb potential.7,8,11 Such pseudopotential
approaches have been used to describe the electronic spectra of
confined systems.12,13 Lin and Ho12 used a pseudopotential for the
lithium atom to simulate the core interaction with the single va-
lence electron with optimized parameters. They calculated the
photoionization cross section of the 2s shell electron under con-
finement by a power exponential potential due to an endohedral
cavity and found thatmultiple Cooper resonances emerged.14 Their
results show the importance of cage thickness and a smooth shell
boundary in the photoionization cross section. Another example is
due to Sarsa et al.,13 who studied the effects of confinement on the
outer valence electrons for the ground state configurations of
carbon and iron atoms. In standard HF theory, the main com-
plication that arises when dealing with quantum confined systems
is the treatment of the one- and two-electron integrals, particularly
the electron exchange integral, as shown by Ludeña.15 Fortunately,
Slater16 proposed a simplified approach to treat the electron ex-
change operator in the HF method by replacing it by a term
proportional to the charge density of the inner electrons. This
approach has been fruitful in treating problems in atomic and
molecular structure with satisfactory results,17 particularly in the
development of DFT theory. However, to the authors’ knowledge,
there have not been any studies of the effects of confinement on the
excitation spectra of a multi-electron system in the context of HF
theory by means of Slater’s X-α approach.

The goal of this work is to apply Slater’s X-α approach to the
ground and excited states of Li-like atoms confined in an impene-
trable spherical cavity. To show the strength of Slater’s X-α approach
to the calculation of the excitation spectrum of atoms, we take as a
benchmark example the ground states of lithium-like atoms in the
initial electronic configuration 1s22s, adopting a restricted HF ap-
proach.We focus on the dipole oscillator strength (DOS) and derived
properties such as the static dipole polarizability and the mean ex-
citation energy.

The remainder of this paper is organized as follows. In Sec. II, we
present the theoretical approach used to study the influence of a
spherical confinement cavity on lithium-like atoms. In Sec. III, we
discuss our results and findings. In Sec. IV, we give our conclusions
and perspectives. Note that we use atomic units (a.u.) throughout,
unless physical units are explicitly stated.

II. THEORY

A. Slater’s X-α approach in Hartree–Fock theory

In this section, we present the HF method to obtain the 1s22s
ground state energies of Li, Be+, and B2+ atoms, incorporating
confinement conditions.

In an HF approach, the total wavefunction is defined as a Slater
determinant Ψ(r) � N det{ψi}, where N is a normalization constant.
The general restricted HF approach18 considers the two electrons in
the 1s2 core to be in the same orbital. To simplify the calculation of the
excitation spectra, we assume that the inner electrons do not see the
outer electrons. This approach is known as the frozen-core

approximation, which is usually treated within a pseudopotential
approach.7,8,11 However, here we do not use any specific pseudo-
potential formula to describe the interaction of the inner electrons,
since this is calculated explicitly for every confinement configuration
in a self-consistent manner. Then, for the ground state of a lithium-
like atom, the HF equations are

(ĥ1 + Ĵ1)ψ1 r( ) � ϵ1ψ1 r( ),
(1)

(ĥ2 + 2Ĵ1 − K̂1)ψ2(r) � ϵ2ψ2(r), (2)

where ϵj are the eigenvalues, ψj are the eigenfunctions, hj are the one-
electron operators, and Ĵ j and K̂j are the two-electron Coulomb and
exchange operators, respectively. These operators are defined as

ĥj(r) � −
1
2
∇2
j −

Z

r
+ Vc(r), (3)

Ĵj(r)ψi(r) � ∫ dr2
ψ∗
j (r2)ψj(r2)

r12
[ ]ψi(r), (4)

K̂j(r)ψi(r) � ∫ dr2
ψ∗
j (r2)ψi(r2)

r12
[ ]ψj(r), (5)

where r12 � |r − r2|. The one-electron operator, Eq. (3), includes the
confinement potentialVc(r) (see below). The total ground state energy
of the confined system is given by

EHF � 2ĥ11 + ĥ22 + Ĵ11 + 2Ĵ12 − K̂12. (6)

It can be seen that Eq. (1) is in eigenvalue form, so the excitation
spectra of the core electron can be readily obtained. However, Eq. (2)
is not, owing to the presence of the exchange operator, Eq. (5). Tohave
an eigenvalue equation, we resort to Slater’s X-α approach,16 in which
the exchange operator is replaced by

K̂1(r)ψ2(r) � αXρ
1/3
1 (r)ψ2(r), (7)

where αX is a parameter, and ρ(r) is the charge density due to the 1s2

inner electrons18 and is given by

ρ1(r) � 2|ψ1(r)|2, (8)

with ψ1(r) the eigenfunction of the core electrons. To solve the HF
equations (1) and (2), we implement a finite-difference numerical
approach within a self-consistent field (SCF) procedure to obtain the
eigenvalues, eigenfunctions, and dipole-dependent properties. For
each iteration, we calculate Eq. (5) explicitly and determine Slater’s
X-α constant as19,20

αX � 〈ψ2(r)|K̂1(r)|ψ2(r)〉
〈ψ2(r)|ρ1/31 (r)|ψ2(r)〉

, (9)

finding the excitation spectrum of the 2s electron. The procedure is
repeated until Eq. (6) has reached self-consistency within a 10−6 error
difference for the total ground state energy.

Owing to the spherical symmetry of the system, we assume
ψ(r) � Rl(r)Ym

l (θ,φ) and Rl(r) � ul(r)/r, where Ym
l are spherical

harmonics. This is done for both core and valence wavefunctions.
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We consider the lithium-like atoms to be confined by
an impenetrable spherical cavity, so the confinement potential is
given by1–6

Vc(r) � 0 , r<R0,
∞ , r≥R0.

{ (10)

where R0 is the confinement radius of the cavity and is commensurate
with the confinement pressure (see below).

1. Finite-difference approach

As the finite-difference approach has been reported previously
by Cabrera-Trujillo and Cruz,21 here we just summarize our
implementation to find the eigenvalues and eigenfunctions of Eqs. (1)
and (2). The finite-difference approach consists in discretizing the
function u(r)→ uk and r→ rk, known at the kth point on a numerical
grid, with k � 0 corresponding to u0 and k � N + 1 to uN+1, which are
the boundary conditions of the system.22 In our case, for the im-
penetrable cavity, uN+1 � 0 and rN+1 � R0. We implement the finite-
difference approach centered at the midpoint. With this, Eqs. (1) and
(2) are rewritten as

H ϕ
→ � E ϕ

→
, (11)

where H is a tridiagonal symmetric matrix with N eigenvalues and
eigenfunctions, and ϕ

→
is related to u→ by a linear transformation.21

We solve Eq. (11) in a grid box that extends from r � 0 to r � R0,
with a total of N � 2000 points spaced logarithmically in this range as a
function of the confinement radiusR0. This logarithmic grid allows us to
give a better description of the wavefunction cusp at the origin and a
goodnumber of continuumstates.Wehave found thatN� 2000 satisfies
the Thomas–Reiche–Kuhn (TRK) sum rule up to five decimal digits.
The accuracy of our finite-difference approach can be controlled by the
number of points in the grid and their spacing; for example, for the free
lithium atom, we obtain eigenvalues with precision up to the fifth
decimal place. This approach gives a total ofN excited states to describe
the DOS electronic properties for each spherical cavity with radius R0,
per electron. The values of R0 are chosen between 0.5 a.u. and 100 a.u.
Our approach is implemented in a Fortran 95 code that calculates the
eigenvalues, eigenfunctions, and physical properties of the system.

B. Physical properties

1. Dipole oscillator strengths

The DOS accounts for the transition probability from an initial
state to a final excited state and is defined as

fn0 � 2(En
HF −E0

HF)
∣∣∣∣∣∣∣∣∣∣〈Ψn(r)|�

N

i�1
ri · ϵ̂ |Ψ0(r)〉

∣∣∣∣∣∣∣∣∣∣
2

, (12)

where ϵ̂ is the direction of momentum transfer or the polarization
vector of the electromagnetic radiation. Here, E0

HF and En
HF are re-

spectively the initial and final total energies, with Ψ0 and Ψn re-
spectively the initial and final total wavefunctions for a given
transition. Owing to the presence of just a single determinant and for
an electron operator, as in the case of the dipole operator Ô � Σi ri, the
DOS are reduced to single-electron transitions from either the core or
the valence electron.18 Under the spherical symmetry of the system,
Eq. (12) becomes23,24

fi
n0 �

2
3
(ϵin − ϵi0) 〈Ri

n(r)|r|Ri
0(r)〉

∣∣∣∣ ∣∣∣∣2, (13)

where the i stands for electron i � 1 (core electron transitions) or i � 2
(valence electron transitions). To confirm that our numerical ap-
proach has rendered a complete set of states, the TRK sum rule,25

Σn fn0 � Ne, must be satisfied, i.e., Ne � 3. Note that for absorption,
Eq. (13) is positive, but for emission, i.e., when ϵin < ϵi0, the DOS
becomes negative.

2. Static dipole polarizability

The static dipole polarizability is defined through the DOS
[Eq. (12)], and is given by

αs ��
n

fn0

(En
HF −E0

HF)2
��

i,n

fi
n0

(ϵin − ϵi0)2
, (14)

where it exhibits an explicit dependence on the single-electron dipole
oscillator strengths. Consequently, it can be rewritten as

αs � 2α1ss + α2ss , (15)

where αis is the contribution from the core (i � 1) or the valence (i � 2)
electron. For photon absorption, the polarizability is positive, but for
photon emission, it becomes negative.

3. Mean excitation energy

Aparameter that characterizes the amount of energy loss when a
swift heavy ion penetrates a target is provided by the mean excitation
energy I0, as defined by Bethe:26

lnI0 ��nfn0 ln(En
HF −E

0
HF)

�nfn0

��i,nf
i
n0 ln(ϵin − ϵi0)
�i,nf

i
n0

. (16)

Using the TRK sum rule,25 Eq. (16) can be rewritten as

3 lnI0 � 2�
n
f1s
n0 ln(ϵ1sn − ϵ1s0 ) +�

n
f2s
n0 ln(ϵ2sn − ϵ2s0 )

� 2 ln I1s0 + ln I2s0 , (17)

which is the orbital decomposition or Bragg rule for the mean ex-
citation energy, as used by Oddershede and Sabin27 in energy loss
deposition studies.

III. RESULTS

A. Unconfined lithium-like atoms

To show the reliability of our approach when applied to a multi-
electron system,wepresent inTable I the results for the unconfinedLi,
Be+, and B2+ atoms. We show the core electron ground and excited
orbital energies ϵ1s0 and ϵ2p0 , the total HF energy EHF, the DOSf

i
is2p for

the first dipole transition, the polarizability αis, and the mean exci-
tation energy Ii0. The same quantities are also reported for the valence
(2s) electron. In the case of the ϵ1s0 and EHF energy values for the Li,
Be+, and B2+ atoms, we observe good agreement up to four-decimal
precisionwhen compared with the results of Froese-Fischer.28 For the
Li atom mean excitation energy I1s0 , we observe a difference of less
than 5% with respect to the value reported by Oddershede and
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Sabin.27 For the valence (2s) electron, we obtain orbital energy
values of ϵ2s,Li0 � −0.201 16 a.u., ϵ2s,Be+0 � −0.672 82 a.u., and
ϵ2s,B2+
0 � −1.397 22 a.u., for the Li, Be+, and B2+ atoms, respectively,
with a difference of less than 3% in comparison with the results of
Froese-Fischer.28 However, for the total HF energy, we obtain values
with a difference of less than 1% with respect to the results of Froese-
Fischer.28 For the dipole polarizability, we obtain α2s,Lis � 171.188 a.u.
and α2s,Be

+
s � 27.3836 a.u., in comparison with values of 164.05 a.u.

and 24.4966 a.u. reported by Schwerdtfeger and Nagle31 and Tang
et al.,32 respectively.

Thus, our approach using Slater’s X-α allows us to account for
the ground state properties ϵis0 and EHF of the Li, Be

+, and B2+ atoms,
with good agreement with available theoretical results.

In Fig. 1, we show the wavefunctions for the 1s and 2s orbitals as
functions of position r for unconfined Li, Be+, and B2+ atoms. For
comparison, we also show the results of Froese-Fischer.28 We ob-
serve excellent agreement for the 1s orbital for all ranges. For the 2s

electron, we also obtain very good agreement for electron distances
r > 1 a.u. However, we observe that small deviations appear for the
inner part of the wavefunction, r < 1 a.u., compared with the Froese-
Fischer results.

B. Confined total and orbital HF energies

In Fig. 2, we show the 1s, 2s, 2p, 3s, and 3p energy levels for Li,
Be+, and B2+ atoms confined by an impenetrable spherical cavity as a
function of the confinement radius R0. For comparison, we also
show the results of Weiss33 for the free atom energy levels at R0 � 30
a.u. We can see that the energy levels increase, reaching the con-
tinuum, as the confinement radius decreases. Furthermore, we
observe the appearance of crossing points for the 2s and 2p energy
levels, as well as for the 3s and 3p levels, which are highlighted by
circles for better visualization. Our results confirm the energy level
behavior and crossing already reported from other approaches.34,35

Figure 2(a) shows the 3s and 3p states of the Li atom. We find that
the energy levels reach the continuum for cavities with R0 < 10 a.u.
andR0< 12 a.u., respectively. Here, the 3s energy level is deeper than
the 3p state. As the confinement radius decreases, the 3s and 3p
energy levels increase until a crossing point around R0 ∼ 6 a.u. For
values of R0 < 6, the 3p energy is lower than the 3s energy. For the 3s
and 3p states of the Be+ and B2+ atoms, we find a similar trend as for
the Li atom. We can see that the crossing points between the 3s and
3p states of the Li, Be+, and B2+ atoms are in the positive spectrum.
For the Be+ atom, we find that the crossing point occurs at R0 ∼
4.6 a.u.

In Fig. 2(b), we show the 2s and 2p energy levels, and we can
again see an energy increase and the emergence of crossing points as
R0 decreases. We find that the 2p energy level of the lithium atom

FIG. 1.Wavefunctions for the 1s and 2s states of Li, Be+, and B2+ atoms as functions
of the radial coordinate r for the unconfined atoms. The curves are our results, while
the symbols are from Ref. 28.

TABLE I. Unconfined ground state properties for free Li, Be+, and B2+ atoms. We report
values for the core (i� 1) and valence (i� 2) electrons for the ground (ϵis0 ) and excited (ϵ2p0 )
orbital energies, the total HF energy EHF, the DOS fi

is2p, the static dipole polarizability
αis, and the mean excitation energy I

i
0. Slater’s αX parameter, Eq. (9), takes the values

αLiX � 0.580 02, αBe
+

X � 0.526 32, and αB
2+

X � 0.499 22.

Core (1s2)

Li Be+ B2+

ϵ1s0 −2.792 32 −5.666 97 −9.541 58
(−2.792 36)a (−5.667 11)a (−9.541 98)a

ϵ2p0 −0.508 09 −1.139 61 −2.021 42
EHF −7.236 33 −13.610 9 −21.985 4

(−7.236 41)a (−13.611 3)a (−21.986 2)a

f1s
1s2p 0.261 19 0.304 97 0.329 65

α1ss 0.102 45 0.027 49 0.010 24
I1s0 103.613 197.505 321.368

(109.32)b . . . . . .

Valence (2s1)

Li Be+ B2+

ϵ2s0 −0.201 16 −0.672 82 −1.397 22
(−0.196 32)a (−0.666 15)a (−1.389 85)a

ϵ2p0 −0.138 61 −0.547 31 −1.210 49
EHF −7.437 49 −14.283 8 −23.38 26

(−7.432 72)a (−14.277 4)a (−23.375 9)a

(−7.419 23)c . . . . . .
f2s
2s2p 0.651 27 0.413 15 0.299 63

(0.767 1)d (0.510 9)d . . .
α2ss 171.188 27.383 6 8.994 40

(164.05)e (24.496 6)f . . .
I2s0 3.567 84 12.052 9 25.765 5

(3.29)b . . . . . .

aFrom Ref. 28.
bFrom Ref. 27.
cFrom Ref. 29.
dFrom Ref. 30.
eFrom Ref. 31.
fFrom Ref. 32.
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becomes positive for R0 < 4.6 a.u. and the 2s energy level becomes
positive for R0 < 4.4 a.u. In this case, the crossing point is present for
R0 ∼ 3.4 a.u. This cavity size corresponds to a pressure of 85 GPa (see
below), which is lower than the 210 GPa reported by Rahm et al.36

The discrepancy is attributed to the different confinement models.
The same occurs for the Be+ atom at a confinement radius of R0 ∼ 2.5
a.u. and for B2+ at R0 ∼ 2.1 a.u. We obtain positive energy values for
the 2s and 2p levels of the Be+ atom for R0 < 2.4 a.u. and R0 < 2.3 a.u.,
respectively. For the 2s and 2p states of the B2+ atom, we find positive
energies for R0 < 1.71 a.u. and R0 < 1.55 a.u., respectively. Note that
since our initial ground state electronic configuration occupies the
2s orbital level, for cavities with R0 lower than the crossing-point
radius, one would have photon emission instead of photon ab-
sorption for the initial electronic configuration, 1s22s. We should
stress that for R0 smaller than the critical cavity radius, the lowest-
energy state of the Li-like systems becomes p-type, and hence the
photon emission from the initial s to the final p states brings the
excited electron to its ground state. Once this transition has taken
place, as the cavity radius is reduced, the p-state evolution lies
energetically below the corresponding s state, and hence the DOS
become positive for excitations.

In Fig. 2(c), we show the 1s energy levels as functions of R0. We
find that the effect of the cavity on the 1s ground state energy is
minimal forR0> 2 a.u.,R0> 1.5 a.u., andR0> 1 a.u. for Li, Be+, and B2+
atoms, respectively. For the Li atom, we observe a sudden change in
the energy for R0 < 2 a.u. and it reaches a positive value for the 1s core
state for R0 < 0.77 a.u. A similar situation occurs for the Be+ atom for
R0 < 0.555 a.u. and for B2+ for R0 < 0.427 a.u.

The increase in energy is explained as follows. For an impen-
etrable cavity, the electrons remain localized within the cavity. As the
pressure increases, so does the electron kinetic energy (as a conse-
quence of the Heisenberg uncertainty principle), and the total energy
can become positive for a critical pressure,36 as we have just shown,
but the system is still bounded.

In Fig. 3, we show the results for the total HF energy for the Li,
Be+, and B2+ atoms in the initial 1s22s configuration, confined by an
impenetrable spherical cavity, as functions of the confinement radius.
For comparison, we also show, in the case of Li, the theoretical results
of Sañu-Ginarte et al.,29 Le Sech and Banerjee,37 Sarsa and Le Sech,38

and Sarsa et al.,13 and we can see that there is excellent agreement. In
addition, theHF results for the unconfined atoms obtained byWeiss33

are shown atR0� 5 a.u. For the free case, whenR0→∞ a.u., we obtain
total energies of ELi

HF � −7.437 49 a.u., EBe+
HF � −14.2838 a.u., and

EB2+
HF � −23.3826 a.u., in good agreement with the values reported by

Froese-Fischer28 and Sañu-Ginarte et al.29 As the confinement radius
decreases, the HF energy increases, for all atoms, as previously re-
ported by Connerade et al.39 For the Li, Be+, and B2+ atoms, we
observe in Fig. 3 that the effect of the cavity isminimal forR0> 7.3 a.u.,
R0 > 5.5 a.u., and R0 > 2.5 a.u., respectively. For the Li atom, for
R0 < 1.3 a.u., the HF energy becomes positive. A similar situation
occurs for the Be+ and B2+ atoms for R0 < 0.94 a.u. and R0 < 0.75 a.u.,
respectively.

From Figs. 2 and 3, we conclude that the effect of the con-
finement cavity is stronger on the valence electrons that on the core
electrons.

FIG. 2.Orbital energies for the 1s, 2s, 2p, 3s, and 3p states of Li, Be+, and B2+ atoms
confined by a spherical impenetrable cavity as a function of the confinement radius
R0: (a) 3s and 3p states; (b) 2s and 2p states; (c) 1s ground state. The crossing
points between the ns–np levels are highlighted by circles for better visualization.
The curves without symbols are for the ns states, while the curves with symbols are
for the np states. For comparison, the HF results of Weiss33 for the unconfined atom
energy levels are also shown at R0 � 30 a.u (▽).

FIG. 3. Total HF energy, Eq. (6), as a function of cavity radius R0 for Li, Be
+, and B2+

atoms. In the case of Li, the symbols show the theoretical results from Sañu-Ginarte
et al.29 (3), Le Sech and Banerjee37 (□), Sarsa and Le Sech38 (○), and Sarsa
et al.13 (△). The HF results for unconfined atoms as reported by Weiss33 are shown
at R0 � 5 a.u (▽).
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C. Pressure

The order of magnitude of the pressure that the cavity exerts on
the atomic system as R0 is shrunk is given by the static pressure

P � −
zEHF

zv
� −

1
4πR2

0

zEHF

zR0
, (18)

where v is the volume of the spherical cavity. In Fig. 4, we show the
results for the pressure as a function of the spherical cavity radiusR0

for Li, Be+, and B2+ atoms. For comparison, we show some
characteristic pressures found in nature. We first note that for the
same cavity radius, the pressure is lowest for B2+, increases for Be+,
and it is highest for Li. This is a consequence of the ionic character
of the system. The lithium atom is more diffuse in its 2s orbital, so
the same cavity radius induces a higher pressure, while, owing to
the high nuclear charge, the boron ion has already compacted its 2s
electron, so the same cavity radius induces a smaller pressure on the
ionic system. The figure also shows the cavity size and pressure for
which the 2s→ 2p transition occurs in our approach. For Li, we find
it at 85 GPa (R0 � 3.4 a.u.), for Be+ at 350 GPa (R0 � 2.5 a.u.), and for
B2+ at 690 GPa (R0 � 2.1 a.u.). These results are within an order of
magnitude of those reported by Rahm et al.,36 which were obtained
using a different confinement model, thus confirming the suit-
ability of our approach. Rahm et al. reported a higher pressure,
probably because their model considers penetrable confinement
conditions.

D. Dipole oscillator strength

In Fig. 5(a), we show the DOS for the electronic transitions
1s→ 2p (core excitations) and 2s→ 2p (valence excitations) for Li,
Be+, and B2+ atoms confined by an impenetrable spherical cavity
as a function of the confinement radius R0. In the case of the Li
atom, for R0 < 15 a.u., f2s

2s2p begins to decrease, showing a change
near R0 ∼ 9 a.u., where we find a value of f2s

2s2p � 0.588 95 a.u. At

R0 � 6.5 a.u., we obtain a DOS of 0.460 46 a.u., and at R0 � 3.5 a.u. a
value of f2s

2s2p � 0.023 20 a.u., near the radius for which the crossing
point occurs. For the Be+ atom, we observe similar behavior. The
DOS for the transition decreases rapidly near R0 ∼ 5 a.u., with
f2s
2s2p � 0.357 81 a.u., and then reaches a value of f2s

2s2p � 0.015 23
a.u. at R0 � 2.6 a.u., which is near the crossing point. For the B2+

atom, we observe the same DOS reduction as R0 is decreased until
the crossing point at R0 � 2.1 a.u.When R0 is decreased, the DOS for
the valence electron excitation, f2s

2s2p, is reduced until the 2s
electron reaches the crossing point between the 2s and 2p energy
levels, so that at that pressure the DOS become zero (ϵ2s � ϵ2p).
Crossing occurs for confinement radii R0 ∼ 3.4 a.u., 2.4 a.u., and 2.1
a.u. for Li, Be+ and B2+ atoms, respectively. For confinement radii
less than the crossing point, the 2p energy levels have lower values
than those found for the 2s energy level, and there is photon
emission induced by the pressure cavity. We should note here that
in a sudden approximation perturbation, for a shrinking of the
cavity from radius R0 to R0 + ΔR0, the probability of finding the
system in the 2p state is zero owing to symmetry arguments (or-
thogonal states). Thus, there is a higher probability for the system to
remain in the same s symmetry state and then proceed to the 2p
state by photon emission. Consequently, for a cavity radius lower
than the critical crossing point, f2s

2s2p becomes negative owing to
photon emission, and some other transitions must increase its DOS
value to satisfy the TRK sum rule. In Fig. 5(a), we also show the core
results for the f1s

1s2p transition, and we can see that the DOS in-
creases as R0 is reduced. f

1s
1s2p shows an abrupt change near R0 ∼ 5

a.u., 3.5 a.u., and 3 a.u. for the Li, Be+, and B2+ atoms, respectively.
For lower values of R0, the DOS transition increases, reaching
values near 1 as consequence of confinement, thus becoming a
dominant intensity line.

FIG. 4. Static pressure induced by the cavity as a function of cavity size R0 for Li,
Be+, and B2+ atoms confined by an impenetrable spherical cavity. The open square
symbols (□) indicate the cavity size and pressure at which the 2s→ 2p transition
occurs. Some naturally occurring pressures are also shown.

FIG. 5.Dipole oscillator strength for the is→ 2p and is→ 3p electronic transitions as
a function of the impenetrable spherical cavity sizeR0 for Li, Be

+, and B2+ atoms for i
� 1 (core) and i � 2 (valence) electrons. The curves without symbols are for the is
→ 2p transition of the valence i � 2 electron, while the curves with symbols are for
the i � 1 core electron.
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In Fig. 5(b), we show the 1s→ 3p and 2s→ 3p DOS for Li, Be+,
and B2+ atoms as functions of the cavity radius. As can be seen, for
cavities with radius lower than the critical crossing point, f2s

2s3p be-
comes larger than unity, although the TRK sum rule is satisfied for all
cavity radii. Thus, 2s→ 3p becomes the strongest transition, so there
is a change in luminosity in the atom as the pressure increases, but in
this case due to photon emission induced by the change in pressure,
similar to piezoluminescence.40

E. Static polarizability

In Fig. 6, we show the static dipole polarizabilities α2ss and α1ss
for the valence and core states for Li, Be+, and B2+ atoms confined
by an impenetrable spherical cavity, as a function of the con-
finement radius R0. The crossing points are highlighted by vertical
lines. Note that owing to the small contribution of the core
electrons, the total atomic polarizability is dominated by the
valence contribution for all pressures. For comparison, Fig. 6(a)
also shows the unconfined Li and Be+ results as reported by
Schwerdtfeger and Nagle11 and Tang et al.32 at R0 � 30 a.u., and it
can be seen that there is good agreement with our results. For
R0 → ∞, we obtain the dipole polarizabilities for unconfined
lithium-like atoms as α2s,Lis � 171.188 a.u., α2s,Be

+
s � 27.3836 a.u.,

and α2s,B
2+

s � 8.994 40 a.u., which exhibit a difference of ∼4% with
respect to HF results.11 From Fig. 6, we observe that as the con-
finement radius decreases, so does the polarizability, until the s–p
crossing point is reached. In Fig. 6(a) for the Li atom, for a cavity
with radius R0 � 4.4 a.u., the polarizability decreases to 54.2926
a.u., which is about 30% of the free value. As R0 is reduced, the 2s
and 2p energy levels become positive, and the α2ss polarizability
increases, diverging at R ∼ 3.4 a.u., which is at the critical crossing
point of the 2s–2p energy levels. For lower values ofR0, α2ss becomes

negative owing to the transition to photon emission. In the case of
the Be+ atom, at R0 � 6.5 a.u., we observe a value of α2ss � 26.2083
a.u., and then the polarizability decreases for lower values of the
confinement radius until R0 ∼ 3.4 a.u., where a minimum value of
α2ss � 16.3509 a.u. is found. Then, for values of R0 < 3.4 a.u., the
polarizability increases rapidly, diverging at R0 ∼ 2.4 a.u., and it
then becomes negative for lower values of R0. A similar situation
occurs for the Be2+ atom, but with aminimum value of 6.772 95 a.u.
at R0 ∼ 2.8 a.u. and a divergence at the crossing point R0 ∼ 2.1 a.u. In
Fig. 6(b), we show the results for the core contribution α1ss , where

FIG. 6. Static dipole polarizabilities α2ss (a) and α1ss (b) as functions of cavity
size R0 for Li, Be

+, and B2+ atoms. The solid triangle (▲) and the solid circle (•)
at R0 � 30 a.u. are the HF results of Schwerdtfeger and Nagle11 and
Tang et al.,32 respectively.

FIG. 7. (a) Mean excitation energies I1s0 (curves with symbols) and I2s0 (curves
without symbols) as functions of cavity size R0 for Li, Be

+, and B2+ atoms. For
comparison, we also show at R0 � 30 a.u. the values of the free atoms obtained by
Oddershede and Sabin27 (○), Kamakura41 (△), and Dehmer et al.42 (□). (b) Total
mean excitation energy I0.

FIG. 8. Slater’s X-α parameter αX as a function of cavity size R0 for Li, Be
+, and B2+

atoms.
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the effect of the impenetrable cavity starts for R0 < 3 a.u. A decrease
in α1ss is observed for lower values of R0, where the energy levels
become positive. As noted already, the total static dipole polar-
izability αs � 2α1s + α2ss is dominated by the contribution of the
valence electron, α2ss .

F. Mean excitation energy

In Fig. 7, we show themean excitation energies I1s0 , I
2s
0 , and I0, for

Li, Be+, and B2+ atoms confined by an impenetrable spherical cavity as
functions of the confinement radiusR0.We can see that atR0� 30 a.u.,
the results for the freemean excitation energies are in good agreement
with previous HF results fromOddershede and Sabin,27 Kamakura,41

andDehmer et al.42 From Fig. 7(a), we can see that as R0 decreases, I2s0
increases, showing an abrupt change nearR0∼ 10 a.u., 5 a.u., and 4 a.u.
for the Li, Be+, and B2+ atoms, respectively, with I2s,Li0 � 3.879 67 eV,
I2s,Be

+
0 � 14.739 33 eV, and I2s,Be

2+
0 � 28.5561 eV. For the Li valence

electron, we observe an increase of∼40%with respect to the freemean
excitation energy at R0 � 4.4 a.u. For Be+, we find an increase of ∼11%,
and for B2+ an increase of ∼9% for the same confinement. Figure 7(a)
also shows I1s0 for Li, Be+, andB2+ atoms, andwe observe an increase in
the mean excitation energy as R0 is reduced. In Fig. 7(b), we show
results for the total mean excitation energy I0. We find I0 � 33.708 90
a.u., in good agreement with the value of 34.004 13 a.u. obtained by
Oddershede and Sabin,27 Eq. (17), and the value of 34 a.u. reported by
Dehmer et al.42 for Li atoms. Note that as a consequence of 2s–2p
energy level crossing, the photon emission produces a negative energy
transfer, so the logarithmic contribution is undetermined, as defined
by Eqs. (12) and (13). This is observed in the I2s0 contribution and in
the total I0 mean excitation energy for R0 less than the critical cavity
radius at the s–p crossing energy levels. Thus, a different approach
may be required to determine it, such as that proposed by Smith
et al.43

G. Slater’s X-α contribution

One advantage of Slater’s X-α approach is that we can estimate
the electron exchange contribution to the energy for a confined
quantum system through a single parameter. In Fig. 8, we show the
behavior of Slater’s X-α parameter αX as a function of the cavity
confinement radius R0. We find that the largest contribution occurs
for the Li atom, followed by the Be+ ion and then the B2+ ion for low-
pressure cavities. The contribution increases as R0 decreases,
reaching a maximum, and it then decreases as the cavity becomes
small. For the ions, the 2s electrons are tighter and the electron
exchange parameter is lower for large spherical cavities. However,
this behavior is inverted as the cavity increases the pressure. For
cavities whose radius is smaller than the critical radius, the αX pa-
rameter is largest for B2+, followed by Be+, and then Li. So, electron
exchange is important as long as the valence electrons remain
bounded.

In Tables II and III, for reference purposes, we show the 1s, 2s,
and 2p energy levels, the total HF energy, the first allowed DOS
transition 2s → 2p, the dipole polarizability, the mean excitation
energy, and Slater’s αX parameter [Eq. (9)] for selected values of the
confinement radius R0 for Li, Be

+, and B2+ atoms,TA
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IV. CONCLUSIONS

Wehave studied lithium-like atoms confined by an impenetrable
spherical cavity of radius R0. We find good to excellent agreement
when comparing orbital and total energies, as well as when deter-
mining dipole transitions, static polarizability, and mean excitation
energies for the unconfined systems. For the lithium atom, we find
excellent agreement for confined ground state energies in comparison
with available theoretical results.

We confirm that, as a consequenceof the confinement, the system
orbital and total energies increase as the pressure increases owing to a
reduction in cavity size. However, the first allowed dipole transition,
2s → 2p, decreases, while 2s → 3p increases. Consequently, as the
pressure increases, the intensity of light emitted by the atom in the
cavity is shifted.However, there is a crossing point (critical pressure) at
which the 2s and 2p energy levels are inverted; consequently, the DOS
for that transition becomes zero at that critical pressure. For higher
pressures, the DOS become negative owing to photon emission. In
addition, the 2s → 3p DOS reach values larger than unity for high
pressures, and the 2s → 2p DOS becomes negative. Thus, we can
confirm that the static dipole polarizability is reduced as the pressure
increases, as the electrons become highly localized within the cavity
and less prone to be polarized, and diverges at the point of transition

from photon absorption to photon emission. We also find that the
mean excitation energy, which measures the ability of the atom to
absorb energy due to excitations, increases as the pressure is increased,
with implications for material damage under extreme conditions. As a
result of the existence of the crossing point, the valence and total mean
excitation energy become undetermined owing to a logarithmic in-
determinacy, and thus a different approach may be required.

Our work shows the reliability of Slater’s X-α approach in the
context of HF theory to study confinedN-electron quantum systems.
This approach has the advantage that it can be extended to larger
systems to provide excitation spectra in different confinement en-
vironments, thus shedding light on the behavior of N-body quantum
systems under extreme conditions.
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TABLE III. Similar to Table II, but for the Be+ and B2+ atoms.

R0 ϵ1s0 ϵ2s0 ϵ2p0 EHF f1s
2s2p f2s

2s2p f2s
2s3p α1ss α2ss I1s0 I2s0 αX [Eq. (9)]

Be+

0.5 2.137 12 60.173 1 31.471 1 60.325 6 0.990 70 −0.608 33 1.572 96 0.001 41 −0.000 21 737.308 . . . 0.346 04
0.55 0.123 48 48.159 9 25.269 9 44.587 6 0.990 17 −0.607 04 1.573 59 0.001 94 −0.000 14 628.227 . . . 0.353 88
0.557 −0.107 08 46.742 9 24.537 9 42.747 0 0.990 03 −0.606 80 1.573 60 0.002 02 −0.000 16 615.258 . . . 0.354 98
0.57 −0.507 74 44.255 4 23.252 5 39.525 3 0.989 73 −0.606 31 1.573 56 0.002 18 −0.000 21 592.433 . . . 0.357 06
0.6 −1.312 15 39.150 5 20.612 9 32.954 1 0.988 82 −0.604 97 1.573 17 0.002 58 −0.000 36 545.347 . . . 0.361 89
0.8 −4.145 59 19.084 9 10.201 9 7.861 46 0.973 72 −0.587 66 1.559 61 0.006 20 −0.003 52 356.727 . . . 0.395 24
1.0 −5.095 47 10.385 1 5.645 46 −2.410 34 0.940 73 −0.553 61 1.525 12 0.011 02 −0.016 18 274.038 . . . 0.428 96
2.0 −5.663 14 0.637 48 0.342 34 −12.970 4 0.609 97 −0.194 04 1.134 74 0.026 48 −2.156 21 198.783 . . . 0.530 27
3.0 −5.667 09 −0.414 12 −0.332 76 −14.025 3 0.395 47 0.118 46 0.787 49 0.027 48 18.111 5 197.523 41.1282 0.534 69
4.0 −5.667 10 −0.614 43 −0.488 48 −14.225 6 0.325 82 0.279 47 0.581 18 0.027 49 18.076 4 197.515 20.3702 0.529 12
5.0 −5.667 09 −0.659 95 −0.531 32 −14.271 2 0.308 63 0.357 81 0.441 37 0.027 49 22.364 1 197.515 14.7393 0.526 99
6.0 −5.667 09 −0.670 23 −0.543 24 −14.281 4 0.305 47 0.393 28 0.336 29 0.027 49 25.356 9 197.515 12.8579 0.526 44
10 −5.667 08 −0.672 89 −0.547 30 −14.284 0 0.304 96 0.413 09 0.147 45 0.027 49 27.374 4 197.514 12.0547 0.526 30
∞ −5.667 11 −0.672 82 −0.547 31 −14.283 8 0.304 97 0.413 15 0.117 10 0.027 49 27.383 6 197.505 12.0529 0.526 32

B2+

0.4 2.057 86 91.865 3 47.233 0 90.8137 0.990 79 −0.609 09 1.574 08 0.000 57 0.0 1157.60 . . . 0.345 26
0.425 0.026 86 79.606 1 40.953 1 74.7372 0.990 50 −0.608 35 1.574 57 0.000 70 0.0 1045.47 . . . 0.350 04
0.43 −0.328 06 77.419 9 39.832 9 71.8863 0.990 41 −0.608 16 1.574 62 0.000 73 0.0 1025.37 . . . 0.351 00
0.6 −6.736 88 33.751 6 17.428 1 16.4387 0.978 38 −0.593 42 1.565 24 0.002 07 −0.002 80 614.980 . . . 0.384 90
0.8 −8.761 85 15.098 4 7.7981 9 −5.712 24 0.938 23 −0.551 23 1.523 06 0.004 37 −0.006 89 435.736 . . . 0.425 00
1.0 −9.319 56 7.291 26 3.712 27 −14.396 3 0.869 37 −0.480 51 1.447 14 0.006 72 −0.030 34 365.245 . . . 0.460 22
2.0 −9.541 72 −0.670 23 −0.699 29 −22.656 2 0.477 74 −0.018 72 0.938 65 0.010 21 −22.104 5 321.515 . . . 0.510 64
3.0 −9.541 95 −1.309 56 −1.135 42 −23.295 7 0.352 20 0.204 47 0.646 29 0.010 24 6.908 57 321.394 40.5256 0.501 88
4.0 −9.541 94 −1.387 56 −1.200 28 −23.373 7 0.331 75 0.277 28 0.469 21 0.010 24 8.205 13 321.394 28.5561 0.499 53
5.0 −9.541 93 −1.396 37 −1.209 33 −23.382 5 0.329 76 0.295 81 0.343 88 0.010 24 8.831 21 321.393 26.1855 0.499 23
6.0 −9.541 92 −1.397 17 −1.210 37 −23.383 3 0.329 64 0.299 16 0.264 51 0.010 24 8.970 87 321.392 25.8135 0.499 20
10 −9.541 89 −1.397 23 −1.210 49 −23.383 3 0.329 63 0.299 66 0.186 63 0.010 24 8.993 81 321.390 25.7654 0.499 20
∞ −9.541 58 −1.397 22 −1.210 49 −23.382 6 0.329 65 0.299 63 0.184 99 0.010 24 8.994 40 321.368 25.7655 0.499 22
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